

Journal of Nonlinear Analysis and Optimization

Vol. 16, Issue. 1: 2025

ISSN : 1906-9685

VIRTUALIZED PAGE RECOVERYAND PERMISSION FOR

WEBAPPLICATIONS USING GENETIC ALGORITHMS

1MD.FATHIMA TABASSUM 2Dr. Y. CHITTI BABU

1M.Tech Scholar, Dept. of CSE, St. Ann’s College of Engineering & Technology, Chirala

2Associate Professor, Dept of CSE, St. Ann’s College of Engineering & Technology, Chirala

Email: mft1713@gmail.com

Abstract: Web system to helps users and administrators of web applications recover from

intrusions such as SQL injection, cross-site scripting, and attacks, while preserving legitimate

user changes..We propose many methods for automating results bottleneck finding using

search-based input-sensitive application profiling. Our key idea is to use a genetic algorithm

as a search heuristic for obtaining combinations of input functions values that maximizes

number of function to represents the elapsed execution time of the application. We present

TAO tool is a software testing tool result automated test and oracle generation based on a

semantic model. TAO is worked grammar-based test generation with automated semantics

evaluation using a denotation semantics framework. The quality of web application is a broad

review of recent Web testing advances model and discuss their goals, targets, techniques

employed, inputs/outputs and stopping criteria. Finally test case can be generated

automatically by solving and modify the problem using evolutionary algorithm.This model is

attractive because it take a suite of adaptive automated and semi-automated solutions in

situations many large complex problem spaces with multiple competing and conflicting

objectives.

Index Terms: Search-based Software Engineering, Evolutionary Algorithms, Optimization

Problem, Evolutionary Testing, Online Information Services

,

1. INTRODUCTION

Search based optimization techniques have

been applied to a number of software

engineering activities[2] such as

requirements engineering, project planning

and cost estimation through testing, to

automated maintenance, service-oriented

software engineering, compiler

mailto:lakshmi.ch38@gmail.com

813 JNAO Vol. 16, Issue. 1: 2025

optimization and quality assessment. can

be the optimization can be applied over the

software engineering activity.[1] We

propose a novel approach for automating

performance bottleneck detection using

search-based application profiling. Our

key idea is to use a genetic algorithm (GA)

as a search heuristic for obtaining

combinations of input parameter values

that maximizes a fitness function that

guides the search process [4]. We

implemented our approach, coined as

Genetic Algorithm-driven Profiler

(GA−Prof) that combines a search-based

heuristic with contrast data mining [3]

from execution traces to automatically and

accurately determine bottleneck. The

testing of web based applications has

much in common with the testing of

desktop systems like testing of

functionality, configuration, and

compatibility. Web application testing

consists of the analysis of the web fault

compared to the generic software faults.

There are various non-equivalence issues

between traditional software testing and

web application testing. As web

applications become more complex,

testing web applications have also become

complex. Performance testing is very

important to improve reliability and

feasibility of web applications for

satisfying users. As web application usage

is enormous, traditional testing technique

is not suitable to solve the problem

because of several difficulties as follows

[5]

 1) Some metrics need to be predicted such

as, the type of users, the number of

concurrent users, and access methods

because of difficulties for simulating real

scenarios.

 2) Since performance is mostly related to

user satisfaction, issues related to

reactivity should be considered in

performance testing

3) Performance testing and scalability are

the focus of system testing, because a large

number of users will access a service in

one distributed web application

concurrently.Evolutionary Algorithms are

used to guide the search. The Fig.1 shows

the structure and interaction of test

activities including test case design by

means of evolutionary algorithms.[6].

Fig. 1: Structure of evolutionary

algorithms

814 JNAO Vol. 16, Issue. 1: 2025

We firstly introduce a declarative tool,

named TAO, which performs automated

test and oracle generation based on the

methodology of denotational semantics

[7]. TAO combines our previous work on

a grammar-based test generator [8] and a

semantics-based approach for test oracle

generation [9], using a formal framework

supporting the denotational semantics. Our

framework incorporates grammar-based

testing and semantics-based oracle

generation into the Selenium web testing

automation to generate an executable JUnit

test suite. Selenium is an open source,

robust set of tools that supports rapid

development of test automation for Web-

based applications.

2. RELATED WORK

The goal of web is to recover the integrity

of a web application after it has been

compromised by an adversary [10]. More

specifically undo all changes made by the

attacker to the system, including all

indirect effects of the attacker’s changes

on legitimate actions of other users [11],

and non-functional fault detection Korel

provided an approach that generates test

cases based on actual executions of AUT

to search for the values of input variables,

which influence undesirable execution

flow, by using function minimization

methods[12]. Artzi et al. used the

Tarantula algorithm to localize source

codes which lead to failures in web

application by combining the concrete and

symbolic execution information [9].

Chilimbi et al. provided a tool. Genetic

Algorithms (GAs) is widely used in many

areas of software engineering such as

software maintenance textual analysis

[13], cloud computing and testing Test

generation is a key point in software

testing. Alshahwan et al. used dynamically

mined value seeding into search space to

target branches and generate the test data

automatically [4]. To achieve higher

branch coverage, McMinn et al. used a

hybrid global-local search algorithm,

which extended the Genetic Algorithm

with a Memetic algorithm, to generate the

test cases Harman designed an approach

by using the dynamic symbolic execution

and search-based algorithms to generate

test data, which can kill both the first order

and higher order mutants for mutation

testing [14]. Ali et al. provided a

systematic review for the search-based test

case generation, which built a framework

to evaluate the empirical search-based test

generation techniques by measuring cost

and effectiveness.

Grammar-based test generation (GBTG)

provides a systematic approach to

producing test cases from a given context-

free grammar. Unfortunately, naive GBTG

is problematic due to the fact that

exhaustive random test case production is

815 JNAO Vol. 16, Issue. 1: 2025

often explosive. Prior work on GBTG

mainly relies on explicit annotational

controls, such as production seeds [15],

combinatorial control parameters [9], and

extra-grammatical annotations [7]. GBTG

with explicit annotational controls is not

only a burden on users, but also causes

unbalanced testing coverage, often failing

to generate many corner cases. TAO takes

a CFG as input, requires zero annotational

control from users, and produces well-

distributed test cases in a systematic way.

3. OPTIMIZATION TECHNIQUES

 Some of the optimization techniques that

have been successfully[4] applied to test

data generation are Hill Climbing(HC)

,Simulated Annealing(SA), Genetic

Algorithms(GAs),

Meta-heuristic Search Techniques Meta-

heuristic techniques have also been applied

to testing problems in a field known as

Search Based Software Testing [2], [3], a

sub-area of Search Based Software

Engineering (SBSE) [1]. Evolutionary

algorithms are one of the most popular

meta-heuristic search algorithms and are

widely used to solve a variety of problems.

The local Search techniques generally used

are

i. Hill Climbing

ii. Simulated Annealing

iii. Tabu Search

Hill Climbing In hill climbing, the search

proceeds [16] from randomly chosen point

by considering the neighbors of the point

Once a neighbor is found to be fitter then

this becomes the current point in the

search space and the process is repeated.

The search terminates and a maximum has

been found HC is a simple technique

which is easy to implement and robust in

the software engineering applications of

modularization and cost estimation.

Simulated Annealing Simulated

annealing is a local search method. It

samples the whole domain and improves

the solution by recombination in some

form. Cost functions define the relative

and desirability of particular solutions.

Minimizing the objective function is

usually referred to as a cost function;

whereas, maximizing is usually referred to

as fitness function.

Tabu Search Tabu search is a met

heuristic algorithm that can be used for

solving combinatorial optimization

problems, such as the travelling salesman

problem (TSP). Tabu search uses a local or

neighborhood search procedure to

iteratively move from a solution x to a

solution x' in the neighborhood of x, until

some stopping criterion has been satisfied.

To explore regions of the search space that

816 JNAO Vol. 16, Issue. 1: 2025

would be left unexplored by the local

search procedure, Tabu search modifies

the neighborhood structure of each

solution as the search progresses.

Genetic Algorithms GA forms a method

of adaptive search in the sense that they

modify the data in order to optimize a

fitness function. A search space is defined,

and the GAS probe for the global

optimum. A GA starts with guesses and

attempts to improve the guesses by

evolution. A GA will typically have five

parts: (1) a representation of a guess called

a chromosome, (2) an initial pool of

chromosomes, (3) a fitness function, (4) a

selection function and (5) a crossover

operator and a mutation operator. A

chromosome can be a binary string or a

more elaborate data structure. The initial

pool of chromosomes can be randomly

produced or manually created. The fitness

function measures the suitability of a

chromosome to meet a specified objective:

for coverage based ATG, a chromosome is

fitter if it corresponds to greater coverage.

Genetic programming results in a program,

which gives the solution of a particular

problem. The fitness function is defined in

terms of how close the program comes to

solving the problem. The operators for

mutation and mating are defined in terms

of the program’s abstract syntax tree.

Because these operators are applied to

trees rather than sequences, Most of the

work on Software Testing has concerned

the problem of generating inputs that

provide a test suite that meets a test

adequacy criterion. The schematic

representation Often this problem of

generating test inputs is called ‘Automated

Test Data Generation (ATDG)’ though,

strictly speaking, without an oracle, only

the input is generated..

817 JNAO Vol. 16, Issue. 1: 2025

Fig. 2: A generic search generation

schema

4. METHODOLOGY

We use web-based subject applications the

inputs for these applications are URL

requests webbased client-server

architecture. Its GUI front-end

communicates back-end that accepts

HTTP requests in the form of URLs. Its

back-end can serve multiple URL requests

from multiple users concurrently. Each

URL exercises different components of the

application. For each subject application,

we traversed the web interface and source

code of these systems and recorded all

unique URLs sent to the back-end, in order

to obtain a complete set of URL requests.

We define a transaction as a set of URLs

that are submitted by a single user. To

answer RQ1, we issued multiple

transactions in parallel collecting profiling

traces and computing the total elapsed

execution time for the back-end to execute

the transactions. Our goal is to evaluate if

GA−Prof can automatically find

combinations of URLs that cause increase

in elapsed execution time. In our

experiments [12] as competitive approach

We conducted comparison experiments on

subject applications, with artificial delays

injected, and compared the effectiveness

of both approaches identifying them. To

choose the delay length and methods to

inject bottlenecks into, we ran the subject

applications without injected bottlenecks

and obtained a ranked list of methods. On

top of this list we obtained natural

bottlenecks. A threat to validity for our

empirical study is that our experiments

were performed on only three open-source

web-based applications, which makes it

difficult to generalize the results to other

types of applications that may have

different logic, structure, or input types.

However, JPetStore and Dell DVD Store

were used in other empirical studies on

performance testing [14] and Agile fant is

representative of enterprise-level

applications, we expect our results to be

generalizable to at least this type of web-

based software applications. Our current

implementation of GA−Prof deals with

only one type of inputs - URLs, whereas

other programs may have different input

818 JNAO Vol. 16, Issue. 1: 2025

types.

Fig. 3: The architecture and workflow

of GA−Prof.

5. STATE OF ART OF WEB TESTING

To bridge the gap between existing web

testing techniques and main new feature

provided by web application. The server

side can be tested using any conventional

testing technique. Client side testing can

be performed at various levels. The

selenium tool is very popular capture-

replay tool and allows DOM based testing

by capturing user session events fired by

user. Such tool can access the DOM and

shows expected UI behavior and replay the

user session. So today’s need is a testing

tool which can test user session and

generate test cases on the basis of expected

UI behaviour as per event fired by user.

State Based Testing: Marchetto proposed a

state based testing technique [17]. Idea is

that the states of client side components of

an AJAX application need to be taken into

account during testing phase [18]. Web

page, and their corresponding values are

used for building its finite state model.

State based technique results indicate that

state based testing is powerful and can

reveal faults otherwise unnoticed or very

hard to detect using existing techniques.

Fig. 4: Traces for Cart Events

6. TAO (Testing Assist par

Ordinateur)

TAO is an integrated tool performing

automated test and oracle generation based

on the methodology of denotational

semantics. It extends a grammar-based test

generator [19] with a formal framework

819 JNAO Vol. 16, Issue. 1: 2025

supporting the three components of

denotational semantics, syntax, semantics

domains, and the valuation functions from

syntax to semantics. TAO takes as inputs a

context-free grammar (CFG) and its

semantic valuation functions, and produces

test cases along with their expected

behaviors in a fully automatic way. An

online version of TAO is available at [8].

Denotational semantics [20,21] is a formal

methodology for defining language

semantics, and has been widely used in

language development and practical

applications. Broadly speaking, for a

webbased application under test (WUT)

which requires grammar-based structured

inputs, the specification of the structured

inputs is a formal language; for those

testing scripts (or methods) running

together with a WUT, the specification of

those scripts is a formal language.

Denotational semantics is concerned with

finding mathematical objects called

domains that capture the meaning of an

input sentence — the expected result of the

WUT, or the semantics of a testing script

the running behavior of the script itself

along with the WUT. In automated test

script generation, it would be ideal that

runtime assertions can be automatically

embedded into a test script, so that when a

test script is invoked for software testing,

the running result immediately indicates

either success or failure of testing;

otherwise, a post-processing procedure is

typically required to check the running

result against the oracle. It allows users to

create a tagging variable as a

communication channel for passing results

from semantics generation to test

generation

An automated web testing framework

based on our testing tool TAO and

Selenium browser automation. The

framework consists of the following main

procedures. (i) A WUT is modeled using a

methodology of denotational semantics,

where CFGs are used to represent the

GUI-based execution model of the WUT,

semantics domains are used to describe

functional behaviors of the WUT, and

valuation functions map user interactions

to expected web behaviors. (ii) TAO takes

the denotational semantics of the WUT as

an input, and automatically generates a

suite of JUnit tests, supported in the

Selenium browser automation tool. (iii)

Through Selenium’s web drivers, a suite of

JUnit test scripts can be executed to test

different scenarios of the WUT.

820 JNAO Vol. 16, Issue. 1: 2025

Fig. 5: Automated Web Testing

Framework

The function APPLY(α, test, root, pNode),

defined in Algorithm 2, applies the

reduction strategy α on each node pNode

in the derivation tree rooted at root in a

top-down, depth-first order. For each

nonterminal node pNode (line 21), the sub-

function checks whether the the reduction

strategy α is applicable on the subtree

rooted at pNode (line 22). We highlight

two implementation details in this

algorithm. (1) We adopt the first-

child/next-sibling data structure for

representing derivation trees; thus,

reducing a subtree of pNode can be

achieved by changing its first child link.

(2) We use a store/restore mechanism to

maintain the original subtree of pNode

(line 23). In case that the reduced test case

is not failureinducing, we have to restore

the original subtree of pNode (lines 27−

30); otherwise, the reduced one will be

used for further reduction. The function

REDUCEBY(pNode, α) applies the

reduction strategy α on pNode.

. Only a failure-inducing reduced test case

will be kept for further delta debugging. In

both cases, either reduced or not, the

function will continue with applying the

reduction strategy α on each child node

recursively (lines 34−36).

7. EXPERIMENT RESULTS

We first show our preliminary

experimental results on automated delta

debugging by applying the GDD approach

on applications which require structured

821 JNAO Vol. 16, Issue. 1: 2025

inputs, and then show experimental results

on Selenium-based web testing

We used the extended TAO with new

capabilities, instant oracle and grammar

directed reduction strategies, to generate

1000 arithmetic expressions and locate the

failure-inducing patterns.

Each of those failing test scripts may

contain one or multiple rounds of parking

cost calculations, and in each round of

parking cost calculation, users may set

entry/exit dates and times in any order and

modify them repeatedly. Our GDD

approach was able to reduce a failing test

script to a simplified one, with an average

reduction ratio about 22%. We found out

that most failures were caused by different

time-boundary issues

Table 1: Faults Summary for the Online

Parking Calculator

Both automated instant oracle generation

and grammar-directed delta debugging are

critical to automating web testing and fault

localization.

Fig. 6: Distribution of the quantity of

captured injected bottlenecks. The x-

axis corresponds to the number of

injected bottlenecks that are captured

by one certain GA−Prof run

8. CONLUSIONS

Our framework is able to generate a suite

of executable JUnit test scripts by utilizing

grammar-based test generation and

semantics-based oracle generation. The

main goal is to make a study of the use of

search-based optimization techniques to

automate the evolution of solutions for

software engineering problems.We

presented TAO, a testing tool performing

automated test and oracle generation based

on a semantics based approach, and

showed a new automated web testing

framework by integrating TAO with

Selenium based web testing for web

testing automation. For example, real

world problems such as optimizing

software resource allocation, triangle

classification, software clustering,

822 JNAO Vol. 16, Issue. 1: 2025

component selection and prioritization for

next release. These are the basis input to

our automated test case generation model.

In our future work we will be

implementing the automated test case

generation model using evolutionary

algorithm that is genetic algorithm. For

example, real world problems such as

optimizing software resource allocation,

triangle classification, software clustering,

component selection and prioritization for

next release.

9. FUTURE WORK

As more and more web technologies have

moved a long way to create web

application. Web testing plays an

important role. Here in this paper we

discussed two well known testing

techniques:-state based testing and

invariant based testing. While these

approaches are tested successful on

various case studies This finding remarks

that, there is a need to generate a test

environment to test latest web technology

designed web application and exercise

each of them. New testing issues can arise

for testing web services for improving

effectiveness and efficiency of web

10. REFERENCES

[1] WasifAfzal, Richard Torkar, and

Robert Feldt.A systematic review of

search-based testing for non-functional

system properties. Inf. Softw. Technol.,

51:957–976, June 2009

 [2] Mark Harman, “The Current State and

Future of SBSE”, Future of Software

Engineering (FOSE'07), IEEE Computer

Society, 2007, pp. 1-16.

[3] Elbaum, S. ,Karre,S., Rothermel,G.,

Improving web application testing with

user session data. In International

conference of software Engineering, pages

49-59, 2003.

 [4] Fujiwara, S., Bochmann, G., Khendek,

F., Amalou, M., Ghedasmi, A. , Test

selection based on finite state models,

IEEE Transactions on Software

Engineering 17(6):591-603, June 1991

[5] TiantianGao, YujiaGe, Gongxin Wu

and Jinlong Ni, “A Reactivity Based

Framework of Automated Performance

Testing For Web Applications” 9

thInternational Symposium on Distributed

Computing and Application to Business,

Engineering and Science.

[6] J. Clark, J. J. Dolado, M. Harman, R.

M. Hierons, B. Jones, M. Lumkin, B.

Mitchell, S. Mancoridis, K. Rees, M.

Roper,and M. Shepperd, “Reformulating

Software Engineering as a Search

Problem,” IEE Proceedings - Software,

vol. 150,no. 3, 2003, pp. 161–175.

[7] Daniel Malcolm Hoffman, David Ly-

Gagnon, Paul Strooper& Hong-Yi Wang

(2011): Grammar-based test generation

with YouGen. Software Practice and

823 JNAO Vol. 16, Issue. 1: 2025

Experience 41(4), pp. 427–447,

doi:10.1002/spe.1017.

[8] UNO LASER Lab (2014): TAO online.

 [9] Ralf Lämmel& Wolfram Schulte

(2006): Controllable combinatorial

coverage in grammar-based testing. In:

International conference on Testing of

Communicating Systems, pp. 19–38,

doi:10.1007/11754008_2.

[10] A. Baars, M. Harman, Y. Hassoun, K.

Lakhotia, P. McMinn, P. Tonella, and T.

Vos. Symbolic search-based testing. In

ASE ’11, pages 53–62, 2011.

 [11] J. Bach. What is exploratory testing?

stickyminds.com.

[12] L. C. Briand, Y. Labiche, and M.

Shousha. Stress testing real-time systems

with genetic algorithms. In GECCO ’05,

pages 1021–1028, 2005.

 [13] J. Burnim, S. Juvekar, and K. Sen.

Wise: Automated test generation for

worst-case complexity. In ICSE ’09, pages

463–473, 2009.

 [14] Y. Cai, J. Grundy, and J. Hosking.

Synthesizing client load models for

performance engineering via web

crawling. In ASE ’07, pages 353–362,

2007

[15] P. Saxena, D. Akhawe, S. Hanna, S.

McCamant, D. Song, & F. Mao (2010): A

symbolic execution framework for

JavaScript. In: 31st IEEE Symp. on

Security and Privacy,

doi:10.1109/SP.2010.38.

[16] Yuanyuan Zhang, “Multi-Objective

Search - based Requirements Selection and

Optimisation”, Ph.D Thesis, King’s

College, University of London, February

2010, pp. 1-276.

[17] Marchetto, A., Ricca, F., and Tonella,

P. (2008a). A case study-based comparison

of web testing techniques applied to ajax

web applications.

[18] Marchetto, A., Tonella, P., and Ricca,

F. (2008b). State-based testing of Ajax

web applications.

[19] EminGünSirer& Brian N. Bershad

(1999): Using production grammars in

software testing. In: the 2nd conference on

Domain-specific languages, pp. 1–13,

doi:10.1145/331960.331965.

[20] A. Stout (2001): Testing a Website:

Best Practices. The Revere Group.

 [21] Watir: Web Application Testing in

Ruby.

 [22] Andreas Zeller & Ralf Hildebrandt

(2002): Simplifying and Isolating Failure-

inducing Input. IEEE Transactions on

Software Engineering 28(2),

